

 Cloud-based Patient Engagement Platform

 A Practice School Report submitted to

 Manipal Academy of Higher Education

 in partial fulfilment of the requirement for the award of the degree of

 BACHELOR OF TECHNOLOGY

 in

 Computer Science & Engineering

Submitted by

 Abhijeet Sahdev

 170905316

 Under the guidance of

 Mr. Parth Srivastav Dr. Geetha M

 Chief Technical Officer & Professor

 MyHealthToday LLC

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

 July 2021

Internship Offer Letter

www.myhealthtoday.care I info@myhealthtoday.care I (323) 696-4535

TO WHOM IT MAY CONCERN

This is to confirm that ABHIJEET SAHDEV will be working at myHealthToday

LLC as an Software Developer Intern from December 14, 2020 to June 4, 2021.

During this Internship, he will work on the implementation of backend services,

mobile application and Web frontend application for MyHealthToday.

Parth Srivastav

Chief Technology Officer

MyHealthToday LLC.

Project Completion Letter

 i

ACKNOWLEDGMENTS

The completion of this project would not be possible without Dr D Srikanth Rao, Director and

Dr Ashalatha Nayak, HOD, Department of Computer Science and Engineering, in securing this

internship. I also convey my sincere gratitude to Dr Geeta M, Professor, for her guidance and

support towards completing several reports and documents that had to be submitted. Lastly, I

would like to thank Mr Parth Srivastav, CTO, MyHealthToday LLC, for his mentorship

throughout this internship.

 ii

ABSTRACT

A recent study shows greater patient engagement leads to improved health outcomes. Thus,

empowering senior patients to self-report health information can be an effective measure to

combat chronic conditions. Thus, the objective of this project was to develop a chronic disease-

specific symptom tracking service that enables patients to use Amazon Alexa to voice report

their disease-related symptoms or simply log their symptoms on their phones/websites. Then,

the collected information will be analyzed based on predefined rules and send an actionable

report to the physician for patient follow up.

 As a part of this project, the existing DynamoDB Database design was modified, and we built

new REST APIs to store data securely and ensure fast response to the front end. For scalability,

serverless architectures and design patterns are used. These challenges were dealt with using

Agile and Test-Driven Development paradigms.

These new APIs and tweaks to the database designs helped us reduce the creation time of new

resources via the frontend and reduced the response time of existing APIs.

By the end of this internship, we successfully managed to deploy the mobile application on

Google Play Store in the US, and it's under review in the Apple Store. The website is now

responsive across different sizes and now has two primary users: providers and patients.

The tech stack of this project comprises NodeJS, DynamoDB, React Native, React.js, and

AWS.

Table of Contents

 Page No

Acknowledgement i

Abstract ii

List Of Tables iv

List Of Figures v

Chapter 1 INTRODUCTION 1

 1.1 Introduction 1

 1.2 General Discussion and Present-Day Scenario 1

 1.3 Motivation 1

 1.4 Objective 2

 1.5 Project Work Schedule 2

Chapter 2 BACKGROUND THEORY

 2.1 Introduction to the project title 3

 2.2 Background Theory 3

 2.2.1 React 3

 2.2.2 React Native 4

 2.2.3 AWS Lambda 4

 2.2.4 AWS Amplify 5

 2.2.5 AWS Dynamo DB 5

 2.2.6 AWS Cognito 5

 2.2.7 Alexa Skills 6

 2.2.8 CI/CD on AWS 6

 2.3 Conclusions 6

Chapter 3 METHODOLOGY

 3.1 Introduction 8

 3.2 Methodology 8

 3.2.1 Agile Software Development 8

 3.2.1.1 Trello 9

 3.2.2 Service Layer Architecture 9

 iii

 3.2.3 Components 9

 3.2.3.1 AlertComp 10

 3.2.3.2 SymptomCard 10

 3.2.3.3 Feedbacks 11

 3.2.4 Designing, Building and Deploying APIs 11

 3.2.4.1 Feedbacks 11

 3.2.4.2 Symptom Creation 12

 3.2.4.3 Storing Review History 14

 3.3 Conclusions 14

Chapter 4 RESULT ANALYSIS

 4.1 Introduction 15

 4.2 Result Analysis 15

 4.2.1 Reports 15

 4.2.2 Symptoms 16

 4.3 Conclusions 17

Chapter 5 CONCLUSION AND FUTURE SCOPE

 5.1 Summary 18

 5.2 Conclusions 18

 5.3 Future Scope of Work 18

REFERENCES 20

ANNEXURES (OPTIONAL) 21

PLAGIARISM REPORT 29

PROJECT DETAILS 32

 iv

LIST OF TABLES

Table No Table Title Page No

1 Feedbacks Database Design 11

2 Review History Database Design 14

3 Report Creation Time over five months 15

4 Symptom Creation Time over five months 16

 v

LIST OF FIGURES

Figure No Figure Title Page No

1. How Lambda Works 4

2. AWS CodePipeline 6

 1

CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter explains the need for the project. It highlights the problems faced today in the

healthcare sector and how this project aims to resolve them. We shall also discuss the USP

(unique selling proposition) of this product, the main objectives and how we spent the last

six months achieving them.

1.2 General Discussion and Present-Day Scenario

Approximately 85% of seniors have at least one chronic condition (CC), and 60%have at

least two CCs [1]. According to Premiers, about 30% of emergency department

visits among patients with common chronic conditions are potentially unnecessary,

leading to $8.3 billion in additional costs for the healthcare industry [2]. It's

expensive. Moreover, COVID-19 has negatively affected the patient-physician

relationship in obvious ways, like limitations to in-person visits and physician burnout.

Given these circumstances, there’s a need to adapt to telemedicine.

1.3 Motivation

By focusing on the pre-clinic phase and between visits, this service empowers patients to

record their health concerns through a mobile app, voice assistant and securely transform

the data into reports/notes that doctors can utilize in their designated electronic health

records (EHR).

Thus, empowering senior patients to self-report health information can be an effective

measure to combat chronic conditions.

1.4 Objective

The main objective of this project was to develop a chronic disease-specific symptom

tracking service that enables patients to use Amazon Alexa to voice report their disease-

 2

related symptoms or simply log their symptoms on their phones/websites. Then, the

collected information will be analyzed based on predefined rules and send an actionable

report to the physician for patient follow up.

1.5 Project Work Schedule

➢ January 2021

o Learn perquisites (React Native).

o Mobile application development

➢ February 2021

o Mobile application development.

o Learnt React.

➢ March 2021

o Web application development.

➢ April 2021

o Submission of report & evaluation (4 Months project)

o Learn perquisites (AWS course on Udemy)

o Backend Development

➢ May 2021

o Backend and Web Development.

➢ June 2020

o Alexa and Chrome Voice Interface Development

 3

CHAPTER 2

BACKGROUND THEORY

2.1 Introduction to the Project Title

As mentioned earlier, the main objective is to build a symptom tracking service. To track

something, it has to be created and stored. Stored records help us analyze a particular

condition or how a symptom has unfolded over the past X months or years, what changes

has the patient observed over the last few weeks, etc. These records can help a doctor

diagnose a patient more efficiently since a patient would take their time to log in the details

of a symptom as and when they occur. They no longer have to remember these details for

the next appointment.

Moreover, frequent visits to their doctors can now drop once or twice in a few months since

the doctors can now access these records. All records are stored and processed in a remote

data centre. In our case, this remote data centre is owned and managed by Amazon – AWS.

Now, let’s discuss the tech stack used in this project in brief.

2.2 Background Theory

2.2.1 React

A top-of-the-line JavaScript library for creating user interfaces. Some of its features are

as follows: -

o Declarative: React allows creating interactive UIs a breeze. Create simple views for

each state of our app and React will update and make the appropriate components

as data changes. Declarative views improve the predictability and debuggability of

our code.

o Component-based: Compose encapsulated modules that maintain their state to

create complex user interfaces. We can quickly transfer rich data through our app

and hold the state out of the DOM since component logic is written in JavaScript

rather than templates.

o Learn Once, write anywhere: Compose encapsulated modules that maintain their

state to create complex user interfaces. We can quickly transfer rich data through

 4

your app and hold the state out of the DOM since component logic is written in

JavaScript rather than templates.[3]

2.2.2 React Native

React Native blends the best features of native development with React. We can use it

in our current Android and iOS projects right now, or we can start from scratch and

create a brand-new app. Our app can use the same native platform APIs as other apps

since React primitives render to native platform UI. We can create platform-specific

versions of modules to code from one codebase across several platforms. React Native

allows a single team to manage two networks while sharing a similar technology—

React. It allows us to create genuinely native apps without compromising the user

experience. It includes a core set of platform-independent native components, such as

View, Text, and Image, that map to the platform's native UI building blocks. React

components use React's declarative UI paradigm and JavaScript to wrap existing native

code and communicate with native APIs. This opens native app development to entirely

new developers' teams and allows current native teams to work even more quickly.[4]

2.2.3 AWS Lambda

 It is a serverless compute service that allows us to run code without providing or

managing servers, writing workload-aware cluster scaling logic, keeping event

integrations up to date, or managing runtimes. We can run code for practically any

application or backend service with Lambda, and we don't have to worry about

administration. Simply upload our code as a ZIP file or container image. Lambda will

automatically and precisely allocate compute execution power and run our code in

response to the incoming request or event, regardless of traffic volume. We can make

your code activate automatically from 140 AWS services, or you can call it directly

from any site or mobile app. [5]

 5

 Fig 1: How Lambda Works

2.2.4 AWS Amplify

It is a collection of tools and resources that can be used together or separately to assist

frontend web and mobile developers in developing scalable full-stack applications

using AWS. We can configure app backends and bind your app in minutes with

Amplify, deploy static web apps in a few clicks with Amplify, and control app content

outside the AWS console with Amplify. Amplify works with various web frameworks

and mobile platforms, including JavaScript, React, Angular, Vue, Next.js, Android,

iOS, React Native, Ionic, and Flutter. With AWS Amplify, you will get to market

quicker. Under the amplify umbrella, we make use of DynamoDb, Aws Cognito and

other services.[6]

2.2.5 AWS Dynamo DB

It's a key-value and document database with performance in the single-digit

milliseconds at any scale. It's a fully managed, multi-region, multi-active, persistent

database for internet-scale applications with built-in security, backups and restores, and

in-memory caching. DynamoDB can handle more than 10 trillion requests per day and

20 million requests per second at its peak.[7]

2.2.6 AWS Cognito

Amazon Cognito allows us to add user sign-up quickly and easily, sign-in, and access

management to your online and mobile apps. Amazon Cognito provides sign-in with

social identity providers such as Apple, Facebook, Google, and Amazon and grows to

millions of users. It provides access control solutions for AWS resources. We can build

roles and assign users to them so that your app can only access the resources that have

been granted to each user. Alternatively, we can utilize identity provider attributes in

AWS Identity and Access Management permission policies to restrict resource access

to users who fulfil specific attribute criteria. [8]

2.2.7 Alexa Skills

They're like applications that give us a new way to share our content and services with

Alexa. Customers may use their voices to do things like check the news, listen to music,

play a game, and more using skills (In our case, an example could be to create a new

 6

symptom). Skills may be published in the Alexa Skills Store by businesses and

individuals to reach and delight consumers across hundreds of millions of Alexa

devices. [9]

2.2.8 CI/CD on AWS

New code is submitted on one end, tested via several phases (source, build, try, staging,

and production), and then published as production-ready code. Fig 2 shows how CI/CD

(continuous integration/ continuous delivery) can be pictured like a pipeline. [10]

 Fig 2: AWS CodePipeline

2.3 Conclusion

To sum it up, the frontend for the web was built using React. React Native was used to

building the IOS and Android Apps. Across both platforms, we made use of several

JavaScript packages and created scalable components to meet our design specs and ensured

that the UI was responsive. Some of these components were made to clean up the code.

This helps reduce the time required to make changes in existing features in the future,

especially those reused across different sections.

User authentication was carried out using AWS Amplify. It employs AWS Cognito as its

authentication provider. Their data is stored in a dynamo dB table, called dev_patient (for

dev/testing) and prod_patient (for production), with the primary key being userId and

recordTime as the sort key. Other indexes were introduced to view the table in a particular

way and fetch desirable data. To access data in this table, APIs were designed and built

using AWS SAM CLI that providers lambda-like execution. After locally testing them,

they were deployed using CI/CD on AWS.

Alexa skill was developed separately on Alexa developers' consoles. It has not been

integrated with the main app as of today.

 7

 8

CHAPTER 3

METHODOLOGY

2.1 Introduction

In this chapter, We shall discuss section 2.3 in detail. Also, we followed agile Software

Development during these six months with tasks or 'tickets' assigned on Trello and meetings

were held via Zoom to build apps that adhere to the Service Layer Architecture. Both concepts

shall be discussed, along with some features and components built to serve them.

2.2 Methodology

2.2.1 Agile Software Development

It involves self-organizing and cross-functional teams working together with their

customers/end-users to identify requirements and create solutions (s). It promotes agile

responses to change and adaptive preparation, evolutionary growth, early

implementation, and continuous improvement. Let’s have a look at some of the

principles:

• Early and consistent delivery of valuable applications ensures customer loyalty.

• Even late in production, it's okay to accept changing requirements.

• Deliver working apps regularly (weeks rather than months)

• Working software is the most critical indicator of success.

• Sustainable development is characterized by the ability to sustain a steady rate of

change.

• Consistent emphasis on technological performance and aesthetics

• Simplicity, or the art of minimizing the amount of work that isn't finished, is critical.

• Self-organizing teams provide the best architectures, specifications, and designs.

• The team considers how to become more successful regularly and adjusts as

required.

To meet these principles, we had a standup call daily, sometimes on weekends too, at a

time of our convenience. Here, we discuss what we had done on that day, followed by

a code review and then I was assigned tasks for the following day. A part of my routine

was to accommodate the suggestions that come up during the code review and then

deliver on the assigned task.

 9

3.2.1.1 Trello

We used it to manage our tasks. Trello uses a 'ticketing' concept to assign tasks to a

specific member within a Trello board. This ticket consists of a short description of the

job to be done, followed by a few images as hints and then tag that member to the ticket.

Trello then sends an email to notify the member about their task.

2.2.2 Service Layer Architecture

A way to critique applications is the architecture of their codebase. There must be a

clear distinction between the service layer, business logic, and finally, where we render

components. It enhances code readability and helps in debugging.

In the service layer, we interact with our backend via APIs. The web application already

had a network service layer, so my job required me to create one for mobile. The service

layer is subdivided into Patients, Symptoms and Reports; basically, different endpoints

have a separate division for themselves. Here, we make the right calls to interact with

our backend. There is a separate file that holds all the common constants that are

required by these three files.

With GET requests in the business logic layer, we manipulate data from the API and

then send it to the UI layer to render it. With POST/PUT/PATCH/DELETE, we

manipulate the information acquired from a user into the desired format that adheres to

our database design and invokes the desired API.

To support this layered architecture, we created components or modules. In the next

section, we shall dive into some of these components.

2.2.3 Components

They are functional units that perform a specific-repeatable task. They must be scalable.

Scalable components are those that can accommodate changes in the future without

breaking the existing code. Moreover, the parameters of a component must be intuitive

and easy to grasp. Here are some examples.

 10

2.2.3.1 AlertComp

As the name suggests, this component displays Alert Dialogs to a user on the mobile

app. Alert Dialogs can be considered a way of conveying messages from the server

(error or success). It has the following parameters:

i. Title: This is the title of the alert dialogue and conveys the sole purpose of

displaying an alert.

ii. Message: This part describes the issue that triggered the alert or a task that a

user must perform.

iii. Type: This parameter classifies alerts into mainly four classes in our app –

success, error, warning, verify.

iv. isActionable: A boolean that indicates whether alert dialog must act.

v. Action: It is the name of a task that is displayed.

vi. Callback: This is the function that is triggered when an action is selected on an

alert.

vii. onDismiss: Function performed upon dismissing an alert.

2.2.3.2 SymptomCard

This component displays a symptom card. In general, it shows details such as name,

severity, symptom location (image) and onset date. Symptoms are displayed all over

our app and can be categorized as follows: review, incomplete, non-chief and general.

They take their definitions from their names themselves. The following

showSymptomImage is a boolean to display symptom location or not, which requires a

gender parameter to show a female or male body.

i. Item: holds the symptom object.

ii. isReview: a boolean to categorize a symptom as review; defaults to false.

iii. showReviewOptions: a function passed from a parent class that adds a review

symptom to a reviewProcessList that sets toggleReview to true for this item,

indicating that a user can now see various options to review this symptom

iv. showSymptomImage: a boolean to display symptom location or not, and this

requires a gender parameter to portray a female or male body

 11

2.2.3.3 Feedbacks

This component was built on the website to take feedbacks from providers. Feedbacks

are associated with reports, patients and can be general feedback too. Moreover, it can

be scaled to take feedbacks from patients, which we will discuss in the next section. It

is a button that, when tapped, displays a dialog containing a set of questions that seek a

provider's opinion on the overall experience of using the software. Coming to its

parameters:

i. Style: This aligns with the feedback button.

ii. AssociatedWith: This is an object that containers two keys, entity and

uniqueIdentifier. The entity can be reports or patients, and uniqueIdentifier

holds the recordTime for report or userId, respectively.

2.2.4 Designing, Building and Deploying APIs

In this section, we shall discuss building new features in an existing application from

scratch. The Feedbacks component discussed in the previous section will serve as the

primary example. The other two examples, Symptom Creation and Storing Review

History indicate the convenience of Dynamo Db.

2.2.4.1 Feedbacks

Table 1: Feedbacks Database Design. ‘scenario’ isn’t a parameter.

userID recordTime associatedWith effectiveness postVisitDocumentation scenario

123 PROVIDERFEEDBACK#TIME1 REPORT#time 5 5

feedback

for one

report

1234 PROVIDERFEEDBACK#TIME2 PATIENT#userId 5 5

feedback

for one

patient

The first step should be modelling the table (Table 1). Modelling gives us a clear idea

about the parameters that will be needed. As mentioned earlier, the primary key for our

table is userID and the sort key in record time. #TIME differentiates one feedback from

the other by the same provider. It is the time when a user invoked the API associated

with this feature. We discussed other parameters in the previous section. It was also

mentioned earlier how we could scale this same design to patients. For patients, the

 12

recordTime will simply begin with 'PATIENTFEEDBACK'. Using constant is a

straightforward and convenient way of uniquely identifying records in a Dynamo Db.

After this, endpoints should be designed. The way employees previously set up APIs,

/providers/feedbacks seemed to be the aptest endpoint. Now, let’s have a look at the

entire API with various methods and request-response bodies.

Endpoint: /provider/feedbacks

Method: POST

Body Params:

Attribute: Format

 {

 associatedWith: REPORT#TIMESTAMP,

 effectiveness: Numeric [0,5],

 postVisitDocumentation: Numeric [0,5]

 }

Response Body

 → Success:

 {

 statusCode: 201,

 message: “Thank you for your valuable feedback.”

 }

 → Error: This is returned when the attributes do not adhere to their formats.

{

statusCode: 400,

message: “Sorry, your feedback was not submitted. Please try

again later.”

}

 Method: GET

 Response Body:

 → Success:

 13

 {

 statusCode: 200,

 data: List of feedback objects associated with this provider,

 message: “Get feedback.”

 }

→ Error:

{

 statusCode: 400,

 message: “Failed to load feedback from this provider.”

}

2.2.4.2 Symptom Creation

Before we discuss the implementation details, let's discuss the symptom creation flow.

To create a new symptom, a user must answer a set of 12 questions about the symptom.

Now, answering twelve questions in one sitting can be tedious. So, we've provided users

with an option to 'Save & Quit' after answering eight questions and is categorized as an

incomplete symptom. Thus, a minimum of eight parameters is required to create a

symptom resource in our table. completionTime differentiates between these two

symptoms. It's 0 for complete symptoms, and the timestamp of symptom creation is

stored for incomplete symptoms.

Considering the frontend, clicking two buttons, 'Save & Quit' and a button at Symptom

Summary (displayed after answering all questions), should create a new resource, i.e.,

symptom in our table. To tackle this situation at the backend, we initially made two API

calls; POST requested to create an incomplete symptom with eight parameters (answers

to first 8), followed by a PATCH request to complete this symptom. In simple terms,

to create a new symptom, first, an incomplete symptom was created and then updated

immediately. However, this solution isn't cost-effective.

Ideally, to create one resource, we should use only one API. For a cost-effective

solution, we utilized the completionTime attribute and passed all the parameters. In

case of incomplete symptoms, we represented the unanswered questions with default

values in our table.

 14

3.2.4.3 Storing Review History

 In the last step of symptom creation, users can choose to review this symptom shortly,

or providers resolved them. They may check it within a day, a week, a month or a few

months later. The main reason for reviews is to track how this symptom has affected

this user over time. For now, we prompt users only to update their severity. Now, the

objective was to reflect these reviews on our table. Each review should be associated

with only one main symptom, and that should be understood when we look at the table.

Table 2 depicts it. Rt1,rt2 and rt3 are timestamps in ascending order. The main symptom

and latest severity store the newest review.

 Table 2: Review History Database Design

3.3 Conclusions

Once the designs are ready,

and the code has been pushed

to the master branch, AWS

Codepline takes over and

deploys it to production. It

makes it convenient for developers to push new changes to production.

In the examples discussed in the previous section, we've paid more attention to designing our

features instead of implementing them or simply writing the actual code mainly because

implementation is a straightforward translation-to-code task once viable solutions are

discovered. Moreover, Dynamo Db tables are easy to use because of their key-value based

nature.

userId recordTime severity initialSeverity

asd SYMPTOM#RTS 7 10

asd SYMPTOM#RTS#REVIEW#rt1 5

asd SYMPTOM#RTS#REVIEW#rt2 6

asd SYMPTOM#RTS#REVIEW#rt3 7

 15

CHAPTER 4

RESULT ANALYSIS

4.1 Introduction

This section shall look into the different stacks of our mobile app (Symptom, Report and

Profile, Setup Flow). The main focus is on time taken to finish tasks on each of these sections.

I will represent the results in the form of a 'time taken vs app versions' graph.

We made monthly versions.

4.2 Result Analysis

4.2.1 Reports

Table 3: Report creation time over five months

Month Time (in secs)

Jan 45

Feb 35

March 37

April 35

May 30

 16

 Once the first version was ready and tested, creating a report was around 45 seconds. However,

over the next month, we managed to bring it down to 35 seconds significantly. We achieved

this by loading the no. of symptoms in a given duration; for five different durations in parallel.

Then it remained the same by the end of April, but there were new functionalities added, such

as storing images that represented the chief symptoms of the report. These images were stored

in our S3 buckets right after a user uploaded them. Storing these images at this stage instead of

doing it while storing the report itself accounted for the extra 5 seconds compared to the time

in May.

4.2.2 Symptoms

Table 4: Symptom creation time over five months

Month Time (in secs)

Jan 90

Feb 85

March 85

April 75

May 75

 17

At first glance, we can observe that the time taken to create a symptom is much longer than the

time taken to generate a report that consists of these symptoms. This is mainly because

symptom creation is a 12 step long process, whereas it takes only three steps to create a report.

As we reached April, we observed a significant drop in the symptom creation time because we

dropped redundant APIs that were involved here. One of them has been discussed in Section

2.2.4.2, and the other being Load Common Symptoms API. As the name suggests, it contained

all the commonly occurring symptoms in our table. Upon further examination, we realized that

these common symptoms will be specific to those living in similar conditions and would not

be nationwide.

4.3 Conclusions

There were no predefined time limits for the functionalities discussed in this chapter, and the

goal was to ensure that they were intuitive, easy-going and non-tedious for users [11]. By the

end of May, we arrived at a satisfying version of our app.

 18

CHAPTER 5

CONCLUSION AND FUTURE SCOPE

5.1 Summary

The main objective of this project was to develop a chronic disease-specific symptom tracking

service that enables patients to use Amazon Alexa to voice report their disease-related

symptoms or simply log their symptoms on their phones/websites. While the Alexa skill has

not been integrated with the app, other main functionalities of the app have been tested and

deployed to production.

As mentioned earlier, we followed the Agile software development paradigm. Meetings were

held on zoom where we would discuss new features, have code reviews and, when needed,

resolve bugs.

5.2 Conclusions

We launched the app on Google Play Store in early April. However, it is still under review for

the Apple Play store. The website has been launched in beta and can now be used by both users

and doctors.

5.3 Future Scope of Work

Recollect section 3.2.4.3, where we had discussed the need for stored review records and how

we could implement it on the backend. Currently, these different reviews are not used at all.

However, we could use these values to display a 'severity vs time' graph. An API has to be

designed to fetch data with recordTime that begins with SYMPTOM#Timestamp to implement

this. The endpoint in this case is base_url/symptoms/{timestamp}. At the server, this API will

first retrieve all entries in the table corresponding to that symptom. Then, we can return a list

of objects in the following format:

[{‘severity’ : value, ‘date’ : dateFormat}],

where dateFormat is a string in YY-MM-DD format, obtained from recordTime of each

symptom. On the frontend (web or mobile), an icon button, preferably in the shape of a graph,

can be added to the symptom card. This button can trigger a dialog or take the user to a new

screen on mobile and render the desired graph.

 In section 3.2.4.1, we discussed the Feedbacks feature implemented for providers on the

website only in detail and mentioned that patient feedback could be represented in the table by

 19

storing recordTime in PATIENTFEEDBACK#Timestamp format. The endpoint, in this case,

is base_url/users/ feedbacks. For mobile, we can display dialogs after completing symptom

creation flow and report creation flow to pursue users and gain their valuable feedback on these

key components of our app. We can ask for generic feedback within the Profile stack itself.

After gaining some traction, the next step is to integrate this software with EHR. An electronic

health record (EHR) is a digital version of a patient's paper chart. EHRs are real-time, patient-

centred records that make information available instantly and securely to authorized users. It

was built to go beyond standard clinical data collected in a provider's office and include a

broader view of a patient's care. One of the most key traits of an EHR is that authenticated

physicians can create and manage health information in a digital format that we can share with

other providers across several health care organizations. We can utilize the redox engine to

integrate this software with EHR.

 20

REFERENCES

Reference

[11] I. Van de Poel and L. Royakkers, Ethics, technology, and engineering: An introduction.

John Wiley & Sons, 2011

Web

[1] "Supporting Older Patients with Chronic Conditions", National Institute on Aging,

2021. [Online]. Available: Website 1.

[2] "Unnecessary ED visits from chronically ill patients cost $8.3 billion", Modern

Healthcare, 2021. [Online]. Available: Website 2.

[3] "Build Mobile & Web Apps Fast | AWS Amplify | Amazon Web Services", Amazon Web Services,

Inc.. [Online]. Available: Website 5.

[4]"React Native · Learn once, write anywhere", Reactnative.dev. [Online]. Available:

Website 7.

[5]"AWS Lambda – Serverless Compute - Amazon Web Services", Amazon Web Services,

Inc.. [Online]. Available: Website 3.

[6]"Build Mobile & Web Apps Fast | AWS Amplify | Amazon Web Services", Amazon Web

Services, Inc.. [Online]. Available: Website 4.

[7]"Amazon DynamoDB | NoSQL Key-Value Database | Amazon Web Services", Amazon.

Web Services, Inc.. [Online]. Available: Website 6.

[8]"Amazon Cognito - Simple and Secure User Sign Up & Sign In | Amazon Web Services

(AWS)", Amazon Web Services, Inc.. [Online]. Available: Website 8.

[9]"Create Alexa Skills Kit | Amazon Alexa Voice Development", Amazon (Alexa).

[Online]. Available: Website 9.

https://www.nia.nih.gov/health/supporting-older-patients-chronic-conditions
https://www.modernhealthcare.com/article/20190207/TRANSFORMATION03/190209949/unnecessary-ed-visits-from-chronically-ill-patients-cost-8-3-billion#:~:text=About%2030%25%20of%20emergency%20department,according%20to%20a%20new%20analysis
https://aws.amazon.com/amplify/
https://reactnative.dev/
https://aws.amazon.com/lambda/
https://aws.amazon.com/amplify/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/cognito/
https://developer.amazon.com/en-US/alexa/alexa-skills-kit

 21

[10]"CI/CD on AWS - Continuous Integration and Continuous Delivery for 5G Networks

on AWS", Docs.aws.amazon.com. [Online]. Available: Website 10.

https://docs.aws.amazon.com/whitepapers/latest/cicd_for_5g_networks_on_aws/cicd-on-aws.html

 22

Annexures

Code Snippets have been included for components discussed in this report.

const AlertComp = ({title, message, type,isActionable, callback, action, onDismiss}) => {

 var jsonPath;

 switch (type) {

 case "error":

 jsonPath = require("../assets/error.json");

 break;

 case "success":

 jsonPath = require("../assets/success-tick.json");

 break;

 case "verify":

 jsonPath = require("../assets/email-sent.json");

 break;

 case "warning":

 jsonPath = require("../assets/warning.json");

 default:

 console.log("no such lottie file exists in assets");

 }

 return (

 <Modal

 animationType="slide"

 transparent={true}

 visible={true}

 style={{ backgroundColor: "rgba(0,0,0,0.5)" }}

 >

 <View style={styles.view}>

 <View style={styles.modal}>

 <Text style={styles.modalText}>{title}</Text>

 <View

 style={{

 width: "100%",

 height: 0.5,

 backgroundColor: "gray",

 marginVertical: 15,

 }}

 ></View>

 {!type ? null : (

 <View style={{ width: "50%", height: 50 }}>

 <LottieView

 source={jsonPath}

 autoPlay

 backgroundColor="white"

 ></LottieView>

 </View>

)}

 <Text style={styles.text}> {message} </Text>

 23

 </View>

 {isActionable ? (

 <View style={styles.buttonRow}>

 <TouchableHighlight

 style={{ ...styles.buttons, backgroundColor: "white" }}

 onPress={() => {

 callback();

 }}

 >

 <Text style={styles.delete}> {action} </Text>

 </TouchableHighlight>

 <TouchableHighlight

 style={{ ...styles.buttons, backgroundColor: "#F4992C" }}

 onPress={() => {

 onDismiss();

 }}

 >

 <Text style={styles.ok}> Cancel </Text>

 </TouchableHighlight>

 </View>

) : (

 <TouchableHighlight

 style={{ ...styles.button, backgroundColor: "#F4992C" }}

 onPress={() => {

 onDismiss();

 }}

 >

 <Text style={styles.ok}> Okay </Text>

 </TouchableHighlight>

)}

 </View>

 </Modal>

);

}

const SymptomCard = ({item,isReview = false, showReviewOptions, toggleReview = false, showSymtomImage =

true, navigator, gender, isIncompleteSymptom = false}) => {

 return (

 <Card

 style={styles.card}

 onPress={() => {

 if(isIncompleteSymptom)

 {

 navigator.push("FeelBetter", {

 incompleteSymptomNumber: item.recordTime.split("#")[1],

 severity: item.severity,

 symptomName: item.symptomName,

 24

 symptomLocation: item.symptomLocation,

 symptomLocationDescription: item.symptomLocationDescription,

 startDate: item.startDate,

 symptomConsistency: item.symptomConsistency,

 symptomDescription: item.symptomDescription.toString(),

 symptomMovement: item.symptomMovement,

 frequency: item.frequency,

 });

 }

 else {

 navigator.push("SymptomSummary",item);

 }

 }}

 >

 {showSymtomImage ? (

 <Card.Cover

 source={{

 uri: item.symptomLocation ? getSymptomImage(gender, item.symptomLocation) :

"https://myhealthtoday-body-parts.s3.us-west-2.amazonaws.com/public/" +

 gender.toString().toLowerCase() +

 "_mob_na.png",

 }}

 style={{

 borderTopRightRadius: moderateScale(10),

 borderTopLeftRadius: moderateScale(10),

 overflow: "hidden",

 }}

 />

) : null}

 {toggleReview ? (

 <View>

 <View

 style={{

 flexDirection: "row",

 justifyContent: "space-between",

 flex: 1,

 }}

 >

 <Text style={[styles.cardHeading, { marginLeft: 15 }]}>

 {item.symptomName}

 </Text>

 <View

 style={{ flexDirection: "row", marginTop: verticalScale(25) }}

 >

 <Text>Severity {item.severity}</Text>

 <Rating style={{ marginHorizontal: 15 }} rating={item.severity} />

 </View>

 </View>

 <View>

 <Divider width="100%" style={{ marginTop: "5%" }} />

 25

 <Text style={styles.cardActionHeader}>

 How has your symptom changed?

 </Text>

 <Card.Actions style={styles.row}>

 <Button

 style={styles.conditionButton}

 color="#505050"

 mode="outlined"

 uppercase={false}

 labelStyle={styles.conditionlabel}

 onPress={() => onBetterPress(item, navigator)}

 >

 Improved

 </Button>

 <Button

 style={styles.conditionButton}

 color="#505050"

 mode="outlined"

 uppercase={false}

 labelStyle={styles.conditionlabel}

 onPress={() => onWorsePress(item, navigator)}

 >

 Worse

 </Button>

 </Card.Actions>

 <Card.Actions style={styles.row}>

 <Button

 style={styles.conditionButton}

 color="#505050"

 mode="outlined"

 uppercase={false}

 labelStyle={styles.conditionlabel}

 onPress={() => noChangeInReview(item, navigator)}

 >

 Same

 </Button>

 <Button

 style={styles.conditionButton}

 color="#505050"

 mode="outlined"

 uppercase={false}

 labelStyle={styles.conditionlabel}

 onPress={() => onResolvedPress(item, navigator)}

 >

 Resolved

 </Button>

 </Card.Actions>

 </View>

 </View>

) : (

 <View>

 26

 <View style={{ marginLeft: 15, paddingBottom: 23 }}>

 <Text style={styles.cardHeading}>{item.symptomName}</Text>

 <View style={{ flexDirection: "row" }}>

 <Text>Severity {item.severity}</Text>

 <Rating style={{ marginLeft: 10 }} rating={item.severity} />

 </View>

 <Text style={{ marginVertical: 8, fontSize: moderateScale(16) }}>

 Started on {DateHelper.formatDateShortMonth(item.startDate)}

 </Text>

 </View>

 {isReview ? (

 <View style={{ flex: 1, }}>

 <Divider width="100%" />

 <TouchableOpacity

 style={{ alignSelf: "center", paddingVertical: "6%" }}

 onPress={() => showReviewOptions()}

 >

 <Text

 style={{

 color: "#F4892C",

 alignSelf: "center",

 fontWeight: "600",

 }}

 >

 Cick here to review

 </Text>

 </TouchableOpacity>

 </View>

) : null}

 </View>

)}

 </Card>

);

}

const styles = StyleSheet.create({

 card: {

 width: width - scale(30),

 borderRadius: moderateScale(10),

 marginVertical: verticalScale(15),

 shadowColor: "#000",

 shadowOffset: {

 width: 0,

 height: 4,

 },

 shadowOpacity: 0.32,

 shadowRadius: 5.46,

 elevation: 5,

 },

 cardHeading: {

 fontSize: moderateScale(20),

 27

 fontWeight: "600",

 marginTop: verticalScale(20),

 textTransform:'capitalize'

 },

 link: {

 color: "blue",

 marginVertical: 5,

 },

 conditionButton: {

 marginHorizontal: scale(10),

 borderRadius: 20,

 width: 130,

 },

 reviewButton: {

 //marginLeft: 10,

 paddingHorizontal: 10,

 },

 searchText: {

 color: "white",

 fontSize: 20,

 //fontFamily: "sans-serif",

 paddingHorizontal: 10,

 },

 row: {

 flexDirection: "row",

 alignItems: "center",

 justifyContent: "center",

 marginVertical: verticalScale(5),

 },

 conditionlabel: {

 fontSize: 18,

 },

 cardActionHeader: {

 fontSize: 14,

 color: "#505050",

 fontWeight: "600",

 alignSelf: "center",

 marginVertical: '5%',

 },

 text:{

 alignSelf:'center'

 },

});

export default SymptomCard;

Network module created for mobile.

 28

Plagiarism Report

 29

 30

 31

 32

PROJECT DETAILS

Student Details

Student Name Abhijeet Sahdev

Register Number 170905316 Section / Roll No A / 42

Email Address sahdevjeet@gmail.com Phone No (M) +91 9741323117

Project Details

Project Title

Project Duration January 2021- June 2021 Date of reporting 14/12/2020

Organization Details

Organization Name MyHealthToday LLC

Full postal address

with pin code

1105 E Katella Ave Unit 366 Anaheim CA, USA - 92805

Website address https://myhealthtoday.care

External Guide Details

Name of the Guide Parth Srivastav

Designation Chief Technology Officer

Full contact address

with pin code

218 Rockview, Irvine, CA, USA - 92612

Email address Parths1@uci.edu Phone No (M) +1 949 774 9777

Internal Guide Details

Faculty Name Dr Geetha M

Full contact address

with pin code

Dept of Computer Science & Engg, Manipal Institute of Technology,

Manipal – 576 104 (Karnataka State), INDIA

Email address geetha.maiya@manipal.edu

mailto:sahdevjeet@gmail.com
mailto:Parths1@uci.edu
mailto:geetha.maiya@manipal.edu

 33

