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Clinical data are inherently hierarchical and relational, yet most machine learning models embed electronic health
records in Euclidean latent spaces that erase this structure. In generative settings, this misalignment causes trans-
port dynamics to collapse hierarchy, degrading interpretability and robustness. My research studies how latent
geometry and transport constraints can be explicitly modeled to preserve clinical structure while maintaining
predictive accuracy.

A central premise of my work is that model behavior is governed as much by transport dynamics as by archi-
tecture or capacity. While prior work has explored geometry-aware representations, transport is often treated
implicitly—optimized for likelihood or reconstruction accuracy without regard for how trajectories reshape la-
tent manifolds. I instead treat transport as a first-class modeling object, asking when transport parameteriza-
tion—rather than model expressivity—determines hierarchical fidelity. In earlier experiments with hyperbolic
embeddings and rectified-flow transport, I observed that geometry-aware choices can improve predictive perfor-
mance while producing unstable or hyperparameter-sensitive structural behavior. These observations motivated
my core research question: when can hierarchy preservation and predictive accuracy coexist intrinsically, and when
is structure maintained only through external constraints rather than the transport dynamics themselves?

To study geometry–transport interactions in a controlled manner, I developed a synthetic ICD trajectory bench-
mark based on rooted medical ontologies. This framework isolates structural fidelity from predictive accuracy,
allowing systematic evaluation across Euclidean and hyperbolic generative regimes. Experiments revealed a con-
sistent pattern: Euclidean models achieved reasonable accuracy while collapsing hierarchy, whereas unconstrained
hyperbolic models preserved structure but became unstable as depth increased. These results indicated that ge-
ometry alone is insufficient—transport must be explicitly constrained for structure preservation to be stable rather
than incidental.

These insights informed HyperMedDiff-Risk, a geometry-aware diffusion framework for clinical risk prediction. The
model integrates hyperbolic ICD embeddings aligned via hyperbolic diffusion distance, graph diffusion encoders
that propagate relational structure, and rectified-flow transport designed to prevent hierarchical collapse during
generation. Unlike prior diffusion-based clinical models operating in Euclidean latent spaces, HyperMedDiff-Risk
explicitly couples geometry and transport throughout training.

On the MIMIC-III heart-failure cohort, HyperMedDiff-Risk outperforms MedDiffusion, achieving higher AUPRC
and Cohen’s κ while maintaining improved hierarchical fidelity. Ablation studies quantify how curvature, diffusion
depth, decoder expressivity, and regularization strength trade off structural preservation and predictive accuracy,
highlighting regimes in which hierarchy is preserved robustly versus those in which it is sustained only through
external constraints. A manuscript detailing these findings is currently in preparation.

My ongoing work extends this framework by studying transport-constrained diffusion and flow models on curved
manifolds, with an emphasis on identifying stability regimes under increasing depth and noise. This includes
fully hyperbolic pipelines where rectified flows operate via parallel-transported velocities, sequence models remain
on-manifold through the risk loss, and curvature-adaptive step size controls maintain stability. I am exploring
multi-scale geometric representations that jointly encode ontological hierarchy, temporal dynamics, and graph
structure, as well as geometry-driven interpretability methods that keep explanations faithful to clinical organiza-
tion rather than post-hoc approximations.

While my current focus is EHR-based risk prediction, these questions naturally generalize to multimodal biomed-
ical data, including imaging, genomics, and ontology-grounded foundation models. My long-term objective is
to develop transport-aware geometric learning frameworks that bridge theory and deployment in biomedical AI,
enabling models whose theoretical behavior and empirical performance are jointly characterized. Through this
work, I aim to contribute foundational insights into geometry-aware generative modeling while advancing systems
that translate reliably to real clinical impact.
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